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Algorithms are considered for the solution of nonstationary electronics problems 
which reduce to calculation of electromagnetic fields and numerical integration 
of the equations of motion of charged particles. It is assumed that at each mo- 
mentof time the potential distribution is described by the Poisson equation. 
Field calculation is performed by finite-difference methods. For simulation of 
the space charge a modified "large particle" method is described. The KSI--BESM 
compilation system is discussed as a means of automation of the problem-solving 
process. Examples of problem solutions are offered. 

i. In the design of electrovacuum devices, charged-particle accelerators, and other 
electrophysical apparatuses the formation of intense current flows with given properties 
in complex electromagnetic fields becomes of importance (see, for example, [i] and the 
literature cited therein). 

In recent years significant progress has been made in the development of electromag- 
netic field computation algorithms for fields satisfying the Laplace or Poisson equations, 
calculation of charged-particle trajectories with consideration of space charge, and crea- 
tion of programs for electronic computer calculation of complex electron-optical systems 
[2-16]. 

Calculation is reduced to solution of a self-congruent problem containing within it- 
self field calculation, which is performed most often by finite-difference methods (al- 
though integral equation methods are also employed [ii, 12]), and numerical integration of 
the equations of motion of the charged particles in the electromagnetic field. 

For space-charge simulation the "large particles!' method is used [7, 14], which in 
the case of stationary problems reduces to the more economical "current tube" or "fila- 
ment" algorithm, described in detail~ for example, in [2-8, 15, 16]. 

The effectiveness of practical problem calculation is strongly dependent on the de- 
gree of automation of the solution process, including initial data preparation, selection 
of economical algorithms, and presentation of results in a form convenient for processing. 
Some of these questions are considered in [6, 8-10]. 

In [16] a description is offered of the KSI--BESM compilation system for solution of 
a wide class of static electron-optical problems: calculation of beams of particles with 
various masses and charges is performed in two- or three-dimensional regions of practically 
arbitrary form, including media with various dielectric properties. Consideration of parti- 
cle distribution over energies and angles, secondary emission, the influence of an external 
magnetic field, and relativistic effects is possible. Such a general formulation has 
various physicotechnical applications, for example, calculation of insulator construction, 
particle accelerators, electron tubes and guns, electronCoptical converters, uhf electronic 
devices, etc. 

The present study will describe algorithms for the solution of corresponding nonsta- 
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tionary problems and means for automation of their computation in the KSI--BESM compilation 
system. 

2. In solving nonstationary problems we make the following assumptions: a) the fre- 
quency and amplitude of variable electrode voltages are independent of particle space 
charge; b) the displacement currents are negligibly small in comparison to conduction cur- 
rents; c) the "intrinsic" magnetic field created by the particle beam is negligibly small. 

In this case the electric field potential ~ satisfies the Poisson equation 

A~ (r, 0 = --  4rip (r, t) (2 .1 )  

where 0 is the space-charge density; t is the time; and r is the point radius vector. 

The motion of an individual particle with mass M i and charge Z i is described by the 
equation (we consider the nonrelativistic case) 

d~r~ Z~ i [v~ • B(r~, t)]) (2 .2)  dt~ = 'M i ( --  V~(ri, t) ~--7- 

where  r i i s  t h e  p a r t i c l e  c o o r d i n a t e ;  v i = d r . / d t ;  c i s  t h e  v e l o c i t y  of  l i g h t ;  and B i s  t he  
induction of the "external" magnetic field, iAt the initial moment of time all elementary 
particles of one mass and charge located in a volume gr, and having velocities in the inter- 
val A~ are joined in one group, or "large particle." Its motion is described by an equation 
of the form of Eq. (2.2), where r i is the coordinate of the center of mass, and v i is the 
mean velocity of all elementary particles in one group. 

If the computation region G is divided into subregions Gp with boundaries Sp and if 
Eq. (2.1) is integrated over each of the ~, then after use of Green's formula we obtain 
for all p 

~v ~ff-n dS : -- 4n i pdr = - - ~ q "  (2 .3)  
Gp 

Below we w i l l  no t  c o n s t r u c t  n u m e r i c a l  methods  fo r  Eq. ( 2 . 2 ) ,  bu t  fo r  t h e  e q u i v a l e n t  
sys tem ( 2 . 3 ) .  

Then 

qv = ~q iv  (2.4) 

where qip is the charge of the i-th large particle, referred to the volume ~ (summation 
is performed over all particles). 

For the potential we consider boundary conditions of the following types: 

~lr~ = g(r, t) (2 ,5)  

";~ lr~ =0 (2.6) 

0~ 
~§ -~-/r~+ = L - ~  Iv_ (2.7) 

Here Fx is the portion of the boundary r with given potential values (as a rule, the 
metal-electrode surfaces), F2 are surfaces or lines of symmetry, and F3 are divisions be- 
tween media with differing dielectric constants. 

In the presence of emitting boundary surfaces, aside from the initial data for the 
large particles located in the computation region at t = 0 

ri[t=0 = rio, Vitt=0 = Vm ( 2 . 8 )  

it is also necessary to set initial coordinates, velocities, and charge values for large 
particles entering into the region in subsequent time intervals. If at the emitter the 
current density is j(r, V, t), then from an elementary area 4S c during a time interval 
At we will "launch" particles with charge 

1 f i i j (r ,  V, t)dtdVdS (2.9) 
q~ = ~ As  k ~ v  
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where V is the velocity of elementary particles entering from the corresponding interval 
AV. The current density j is assumed a fixed function of r, V, t. A special class is 
represented by problems with current limited by space charge, where at zero initial parti- 
cle velocities the current density on the emitter with potential ~ = 0 is defined by 

j ( r ,  t) = ClT3h(r @ dn, t ) d  -~ ( 2 . 1 0 )  

where ci is a known constant, and d is a value so small that at a distance d from the emit- 
ter equipotential lines may be considered "almost" parallel to its surface, and within this 
interval the solution is assumed to obey the three-halves law, Eq. (2.10). 

We take into consideration problems with secondary emission, wherein on some surfaces 
a current density is given as a function of the current and velocity of incident "primary" 
particles, and also of the properties of the electrode material. 

We will now consider the solution of the nonstationary problem. For the initial mo- 
ment of time we find the potential distribution with density values and boundary condi- 
tions at t = To = O. Then in the field ~ (r, 0), B(r, 0) we calculate particle trajectories 
up to a moment TI > To and the space charge introduced by these particles. Then for the 
charge distribution thus determined and boundary conditions at t = T~, the function ~(r, 
T~) is calculated, particle trajectories up to moment T2 are calculated, etc. The process 
is continued up to a given t = T. During computation of the sequential interval AT v = 
Tv+ I -- Tv as initial data we take the parameters of all particles calculated earlier at 
time t = Tv, and also parameters of particles which enter the computation region at this 
moment. If a particle passes beyond the limits of the region, it is excluded from further 
consideration. The error in such a representation of a nonstationary process is a value 
of the order of o(AT). If AT v is large compared to the characteristic time for change of 
problem parameters, then in each step Tv iteration may be performed with respect to space 
charge, repeating the computation of trajectories and fields several times. 

Potential field calculation will be performed by finite-difference methods in a recti- 
linear (in the three-dimensional case, parallelepipedal) grid with piecewise-continuous 
steps. The Poisson equation with boundary conditions (2.5)-(2.7) is approximated by five- 
point (seven-point in three dimensions) difference equations, described in detail in [16, 
17] and having, in general, a solution error of o(h) (h being the maximum grid step). If 
the region has no internal boundaries, i.e., the medium is homogeneous, and the Neumann 
conditions are given only on boundaries parallel to the coordinate lines, the error is 
o(h2). The finite-difference Poisson equations are equivalent to an approximation of Eq. 
(2.3), while as Gk we take the cell of the difference grid. As an example, in Fig. I this 
is the region 

1 I 

2 2 ' 

while the equation has the form 

(hV) i J  hj ~- hi_ 1 Ui~l j  -@ - -  
21ti------~l 

U~i+ ~ _ . _  + 1 h i + hi_ 1 / " X + k 

h i -b hi_ 1 hj + hi_ 1 
2hj_l Uij-1 @ 2h i Ui+li 

X (hi + hi_l) (h i + hi_l) 
(2.11) 

Solution of the difference equations is performed by some iteration method, which may 
be represented in the form of a universal algorithm 

U n+l = U n -1- H n  ( A U  n - -  ]) ( 2 . 1 2 )  

The m a t r i x  H n d e f i n e s  t h e  c o n c r e t e  a l g o r i t h m ,  f o r  e x a m p l e ,  f o r  t h e  e x p l i c i t  Peaceman- -  
R o c k f o r d  m e t h o d  h a v i n g  t h e  f o r m  

H~ = @ (g  -- ~A~) -~ (E -- vAl) -1 (2. 13) 

w h e r e  z i s  t h e  i t e r a t i o n  p a r a m e t e r ,  and  i l l ,  52 a r e  t h e  l o w e r  and  u p p e r  t r i a n g u l a r  m a t r i c e s ,  
h i  + A2 = h .  More d e t a i l s  o f  i t e r a t i o n  m e t h o d s  e m p l o y e d  a r e  g i v e n  i n  [ 1 6 ,  1 7 ] .  

The most effective algorithm for solution of difference equations is obviously that 
one employing a sequence of grids (see [17] and the literature cited therein), realized in 
the KSI--BESM system for two-dimensional problems with arbitrary boundary form and boundary 

conditions. 
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Fig. 1 

Numerical integration of the equations of motion is performed, as in [14], by a sta- 
ble system with second-order error. In the algorithm employed calculation of the right 

side is performed once in each step, not twice as in [14]: 

Atn [ V n + l  ~ V n " htn 
(2.14) 

rn+l = rnJ~- Atn Vn+l + vn 
2 

Here the indices i are omitted for brevity, 6 = Z/M, At n is the integration step 
(At n ~ ATe). Potential gradients are calculated from the results of numerical solution 
of the Poisso~ equation at the grid nodes. The function B(r) is assumed given. A special 
case is the class of problems where magnetic-induction values are given along the axis or 
plane of symmetry, and are calculated at remaining points within the region from extension 
formulas. 

We will examine the algorithm for space-charge computation in more detail. From an 
area AS of the emitting surface at some "middle" point Mo at moment To let there depart 
with a velocity vo an elementary particle, which over the time interval AT~ = T~ -- To ar- 
rives at the point M~ with velocity v:. We assume that at moment T~ the charge of all 
particles of the velocity group with mean initial velocity vo leaving during the time ATI 
is located within a cylinder of volume ASMoM~. The value of this charge is equal to ATe! 
where I is the mean (over time ATI) current value passing through the surface AS (if the 
"partial" current density j(Mo, vo, To), corresponding to elementary particles in the group 
with mean velocity vo is known, one can take I = j(Mo, vo, To)AS). The charge ATI! is 
distributed over cells G k of the difference grid intersecting the volume ASMoMI, on the 
assumption that the value of j therein is constant. To do this we divide the base of the 
cylinder AS into N: equal areas, and the segment MoM~ into N= intervals such that with the 
assumption of constant acceleration (v~ -- vo)/AT~ a particle traverses the intervals in 
equal time intervals. Thus, we obtain NIN2 volumes containing equal charges AT~I/NIN2, 
each of which we refer to that difference cell in which the corresponding volume's center 
lies. We then proceed further in an analogous manner. For example, at moment T2 the pre- 
viously considered charge AT~I is distributed over the volume of a cylinder with bases 
centered at M2 and Mol, where M2 and Mol are the positions at T2 of particles which de- 
parted at t = TI from the points M~ and Mo, respectively. 

If at the initial moment there is already a space charge located within the calcula- 
tion region, the large particles are defined as rectilinear cylinders with directions 
parallel to the corresponding mean elementary-particle velocities. In Fig. 1 for the 
two-dimensional case we schematically depict division of charges between sections with 
points M~ and M~+ i" 

If the problem is stationary, i.e., boundary and initial conditions are time-indepen- 
dent, then the described process may be considered a performance of successive approxima- 
tions to the solution. In particular, it is then possible to take AT = ~, i.e., the tra- 
jectories of all particles are calculated up to exit from the region, and the charge is 
considered distributed in current tubes ("filaments") whose forms are described by the 
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trajectories of the corresponding particles. For stationary problems selection of the iter- 
ation method by space charge is valuable (see, for example, [16]). 

3. We will consider certain peculiarities of the KSI--BESM compilation system for cal- 
culation of nonstationary problems. The basic components of the KSI--BESM are language de- 
vices for description of the initial data and algorithms, a program library (module system), 
and a control complex. 

An effective means of automating formulation of initial data is the PG language for 
description of two-dimensional boundary problems [18], which permits effective specification 
in convenient form of the configurations of multielectrode devices. The translator from PG 
language included in the KSI--BESM verifies validity of the input information, indicating 
any errors present. 

The KSI--BESM module library contains a set of programs written in BESM-6 machine code 
and a catalog with information on the location and input parameters of all modules. The li- 
brary contains a developed set of algorithm and service programs. The algorithm modules are 
distinguished by their functions, the form of the method employed, and that they also depend 
on the concrete form of the problem. For example, in the library there is a set of various 
iteration programs for solution of Poisson difference equations (point and block upper re- 
laxation, longitudinal-transverse drive, variable triangle methods, etc.) with differing 
memory requirements and convergencerates for various problems. Independent modules are 
reserved for two- and three-dimensional variants, and also for absence or presence of space 
charge (i.e., the Laplace or Poisson equations). Analogously, for the other cumbersome part 
of the problem, trajectory calculation, algorithms for numerical integration of the equa- 
tions of motion are realized in individual modules depending on the dimensionality of the 
problem, presence of a magnetic field, relativity effects, etc. 

The service portion of the library, aside from control of input data, ensures printout 
of the results in useful form (potential, field intensity, current, etc., values, equipo- 
tential lines and trajectories, including graphic printout). 

The operation of the compilation system is controlled by a modular programming language 
KSI [19], which contains operators for module rotation, information exchange with external 
computer components, library and archive formation, and also operators for arithmetical oper- 
ations, control transmission, etc. The program in KSI language for solution of a concrete 
problem is transformed by the compiler to a control program, which then performs the calcu- 
lation directly. 

The KSI--BESM facilities permit computation in stages with storage of intermediate re- 
sults in the archive, as well as computation of Several variants of the problem. 

The KSI--BESM library with catalog, PG translator, program compiler, and archive are 
contained on one magnetic tape. Each individual system module utilizes only one BESM-6 
memory, and recourse to magnetic drums or tapes can be had when convenient by change of mod- 
ules or completion of the computation. 

The difference algorithms permit solutions of the Poisson equation on a rectilinear grid 
with piecewise constant steps and a number of nodes up to I0,000 in two dimensions and 7,000 
in three dimensions. For the two-dimensional case, independent of the type of boundary 
problem, a sequence of coarser auxiliary grids may be utilized. 

In the calculated region a varying quantity of emitting surfaces may be specified, in- 
cluding ones emitting "secondary'! particles. The particles may be divided into an arbitrary 
number of energy or angular groups according to a distribution fixed by the user. Particle 
velocity and coordinate values found in solution of nonstationary problems are preserved 
either in the operative memory or on a magnetic drum. The maximum number of particles in 
the calculated region is ~7500 in two dimensions, ~5000 in three dimensions. 

4. We will present some examples of Calculation of nonstationary beams in electromag- 
netic fields. 

The problem of interaction of a grouped electron flow with the high-frequency field 
of a planar diode in the high-amplitude regime was solved. The gap studied and particle 
beams are shown schematically in Fig. 2. The problem consists of calculating the motion of 
a monochromatic beam of length L, entering the gap with uniform velocity through the plane 
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AA', transparent to electrons, at a potential Uo. At the output plane BB' of the gap a vari- 

able accelerating voltage ~ = U m sin (mt + ~o), is applied, where ~ o is the initial phase of 
the cluster in the gap m = 2~vo/5 L, vo is the electron velocity at the gap input. On the 
planes AB and A'B' the condition 8~/8n = 0 is imposed. Calculations were performed for clus- 
ter precedence p = I/Uo 3/2 = 5"10 -6 a/b 3/2 (I, beam current), initial phase ~ o = 150 ~ and 

statistical flight angle 0o = ~d/vo = ~/2, where d is the gap width. 

The cluster was simulated by 20 "large particles," released into the gap at intervals 
AT = L/20 vo. The field was calculated at the nodes of a uniform grid with 1 = 40 intervals 
across the gap width. Calculations were performed up to time T = i00 AT. 

Curves in Fig. 3 and Fig. 4 show the dependence of flight angle 0 = ~ (T/ -- To) and the 
ratio v//vo on the electron entrance angle ~ + ~To + ~0 for a uhf oscillation amplitude ~ = 
U /Uo = 1.0, where To is the time of entrance of electrons into the system with velocity vo; 

T~, v I are the time and velocity at exit from the system. Results of calculations obtained 

with the KSI--BESM system and the kinematic approximation (curves 2 in Figs. 3 and 4) prac- 
tically coincide with corresponding theoretical data (curves 3 in Figs. 3 and 4) presented 
in [20]). Curves 1 in Figs. 3 and 4 correspond to calculation with consideration of space 
charge. As is evident from the graphs, space charge leads to acceleration of electrons in 
the forward portion of the cluster and braking of electrons at the cluster end (their flight 
angle increases). 

A study was made of the electron flow-formation process in an electron optical system 
with braking. 

The system geometry and electrode potentials are shown in Fig. 5. On the surfaces de- 
noted by dashed lines the condition 8~/8n = 0 was imposed; on the line ABCDEFG -- ~ = Ua, 
on VKLZ -- ~ = U k , on MNP -- ~ = U k , on SPQ - ~ = Uxk. The magnetic field Ho was homogeneous 
and directed perpendicular to the ~lane of the diagram. 

Through the system entrance plane AA' there periodically are introduced electron clusters 
which are represented as sets of large particles. The particles of each cluster are intro- 
duced into the region studied at identical time intervals AT = To/N, where To is the transit 
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time of a single cluster across AA'. Initial coordinate and velocity values of particles in 
the plane AA', and also values of the charges at each time moment, were set by the results 
of computing the preceding portion of the electron opticalsystem. Calculations were per, 
formed for the following parameter values: 

U~/Ho~d22 = 0.39 v ~ - c m  s, U ~  = - - 0 . 0 7 5 U a ,  U~, = 0 

Uh, = 0.t5 Ua, N =  24 

The calculation region was covered by a rectilinear finite-difference grid with total 
of 2000 nodes. Figure 5 shows trajectories of electrons entering the region at time T = 
14 AT, calculated in the kinematic approximation. The same figure shows the distribution of 
large particles, denotedby crosses, at time 70 AT. Consideration of cluster space charge 
leads to settling of a portion of the particles in the first electron optical system section 
Onto the cold cathode. 
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